References
Ackoff, R. L. (1989). From data to wisdom. Journal of Applied
Systems Analysis, 16(1), 3–9.
Ädel, A. (2020). Corpus compilation. In M. Paquot & S. Th. Gries
(Eds.), A Practical Handbook of Corpus
Linguistics (pp. 3–24). Switzerland: Springer.
Albert, S., de Ruiter, L. E., & de Ruiter, J. P. (2015).
CABNC: The Jeffersonian transcription of the
spoken British National Corpus. TalkBank. Retrieved from https://saulalbert.github.io/CABNC/
Baayen, R. H. (2004). Statistics in psycholinguistics: A critique of
some current gold standards. Mental Lexicon Working Papers,
1(1), 1–47.
Baayen, R. H. (2008). Analyzing linguistic data: A practical
introduction to statistics using R. Cambridge
University Press.
Baayen, R. H. (2010). A real experiment is a factorial experiment?
The Mental Lexicon, 5(1), 149–157. doi:10.1075/ml.5.1.06baa
Baayen, R. H. (2011). Corpus linguistics and naive discriminative
learning. Revista Brasileira de Linguística
Aplicada, 11(2), 295–328.
Baayen, R. H., Feldman, L., & Schreuder, R. (2006). Morphological
influences on the recognition of monosyllabic monomorphemic words.
Journal of Memory and Language, 55, 290–313. doi:10.1016/j.jml.2006.03.008
Baayen, R. H., & Shafaei-Bajestan, E. (2019). languageR: Analyzing linguistic data: A practical
introduction to statistics. Retrieved from https://CRAN.R-project.org/package=languageR
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604), 452–454. doi:10.1038/533452a
Bao, W., Lianju, N., & Yue, K. (2019). Integration of unsupervised
and supervised machine learning algorithms for credit risk assessment.
Expert Systems with Applications, 128, 301–315. doi:10.1016/j.eswa.2019.02.033
Bengtsson, H. (2024). future: Unified
parallel and distributed processing in R for everyone.
Retrieved from https://future.futureverse.org
Benoit, K., & Obeng, A. (2024). readtext: Import and handling for plain and
formatted text files. Retrieved from https://CRAN.R-project.org/package=readtext
Ben-Shachar, M. S., Makowski, D., Lüdecke, D., Patil, I., Wiernik, B.
M., Thériault, R., & Waggoner, P. (2024). effectsize: Indices of effect size. Retrieved
from https://easystats.github.io/effectsize/
Blischak, J. D., Carbonetto, P., & Stephens, M. (2019). Creating and
sharing reproducible research code the workflowr way.
F1000Research, 8(1749). doi:10.12688/f1000research.20843.1
Braginsky, M. (2024). wordbankr:
Accessing the wordbank database. Retrieved from https://CRAN.R-project.org/package=wordbankr
Bray, A., Ismay, C., Chasnovski, E., Couch, S., Baumer, B., &
Cetinkaya-Rundel, M. (2024). infer: Tidy
statistical inference. Retrieved from https://github.com/tidymodels/infer
Bresnan, J. (2007). A few lessons from typology. Linguistic
Typology, 11(1), 297–306.
Bresnan, J., Cueni, A., Nikitina, T., & Baayen, R. H. (2007).
Predicting the dative alternation. In G. Bouma, I. Kraemer, & J.-W.
C. Zwart (Eds.), Cognitive Foundations of
Interpretation (pp. 1–33). Amsterdam: KNAW.
Brown, K. (2005). Encyclopedia of language and linguistics
(Vol. 1). Elsevier.
Bryan, J., Hester, J., Robinson, D., Wickham, H., & Dervieux, C.
(2024). reprex: Prepare reproducible
example code via the clipboard. Retrieved from https://reprex.tidyverse.org
Buckheit, J. B., & Donoho, D. L. (1995). Wavelab and reproducible
research. In Wavelets and statistics (pp. 55–81). Springer.
Bychkovska, T., & Lee, J. J. (2017). At the same time:
Lexical bundles in L1 and L2
university student argumentative writing. Journal of English for
Academic Purposes, 30, 38–52. doi:10.1016/j.jeap.2017.10.008
Campbell, L. (2001). The history of linguistics. In M. Aronoff & J.
Rees-Miller (Eds.), The Handbook of
Linguistics (pp. 81–104). Blackwell Publishers.
Carmi, E., Yates, S. J., Lockley, E., & Pawluczuk, A. (2020). Data
citizenship: Rethinking data literacy in the age of disinformation,
misinformation, and malinformation. Internet Policy Review,
9(2). Retrieved from https://policyreview.info/articles/analysis/data-citizenship-rethinking-data-literacy-age-disinformation-misinformation-and
Chambers, J. M. (2020). S, R, and data science.
Proceedings of the ACM on Programming Languages,
4(HOPL), 1–17. doi:10.1145/3386334
Chan, S. (2014). Routledge encyclopedia of translation
technology. Routledge.
Conway, D. (2010, September). The data science Venn
diagram. drewconway.com. Retrieved from http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
Conway, L. G., Gornick, L. J., Burfeind, C., Mandella, P., Kuenzli, A.,
Houck, S. C., & Fullerton, D. T. (2012). Does complex or simple
rhetoric win elections? An integrative complexity analysis
of U.S. Presidential campaigns. Political
Psychology, 33(5), 599–618. doi:10.1111/j.1467-9221.2012.00910.x
Cross, N. (2006). Design as a discipline. Designerly Ways of
Knowing, 95–103.
Csárdi, G., Nepusz, T., Traag, V., Horvát, S., Zanini, F., Noom, D.,
& Müller, K. (2024). igraph: Network
analysis and visualization. Retrieved from https://r.igraph.org/
Data never sleeps 7.0. (2019). Data Never Sleeps 7.0.
Infographic. Retrieved from https://www.domo.com/learn/infographic/data-never-sleeps-7
de Marneffe, M.-C., Manning, C. D., Nivre, J., & Zeman, D. (2021).
Universal dependencies. Computational Linguistics,
47(2), 255–308. doi:10.1162/coli_a_00402
Deshors, S. C., & Gries, S. Th. (2016). Profiling verb
complementation constructions across new Englishes.
International Journal of Corpus Linguistics., 21(2),
192–218.
Desjardins, J. (2019, April). How much data is generated each day?
Visual Capitalist. Retrieved from https://www.visualcapitalist.com/how-much-data-is-generated-each-day/
Donoho, D. (2017). 50 years of data science. Journal of
Computational and Graphical Statistics, 26(4), 745–766.
doi:10.1080/10618600.2017.1384734
Du Bois, J. W., Chafe, W. L., Meyer, C., Thompson, S. A., Englebretson,
R., & Martey, N. (2005). Santa Barbara Corpus of
Spoken American English, parts 1-4. Philadelphia:
Linguistic Data Consortium. Retrieved from https://www.linguistics.ucsb.edu/research/santa-barbara-corpus
Dubnjakovic, A., & Tomlin, P. (2010). A practical guide to
electronic resources in the humanities. Elsevier.
Duran, P. (2004). Developmental trends in lexical diversity. Applied
Linguistics, 25(2), 220–242. doi:10.1093/applin/25.2.220
Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P. (2012).
Mapping the geographical diffusion of new words. Computation and
Language, 1–13. doi:10.1371/journal.pone.0113114
Firth, J. R. (1957). Papers in linguistics. Oxford University
Press.
Francom, J. (2022). Corpus studies of syntax. In G. Goodall (Ed.),
The Cambridge Handbook of Experimental
Syntax (pp. 687–713). Cambridge University Press.
Francom, J. (2024). qtkit: Quantitative
text kit. Retrieved from https://CRAN.R-project.org/package=qtkit
Gandrud, C. (2015). Reproducible
research with R and R studio (second
edition.). CRC Press.
Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word
embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences,
115(16), E3635–E3644. doi:10.1073/pnas.1720347115
Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and
reproducible research. Journal of Computational and Graphical
Statistics, 16(1), 1–23.
Gilquin, G., & Gries, S. Th. (2009). Corpora and experimental
methods: A state-of-the-art review. Corpus Linguistics and
Linguistic Theory, 5(1), 1–26. doi:10.1515/CLLT.2009.001
GitHub. (2024). GitHub. Let’s build from here.
Code Repository. Retrieved from https://github.com
Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix
recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management Information Systems
(TMIS), 6(4), 1–19.
Gries, S. Th. (2013). Statistics for linguistics with
R. A practical introduction (2nd
revise.).
Gries, S. Th. (2016). Quantitative corpus linguistics with
R: A practical introduction (2nd ed.). New York:
Routledge. doi:10.4324/9781315746210
Gries, S. Th. (2021). Statistics for linguistics with
R. De Gruyter Mouton.
Gries, S. Th. (2023). New technologies and advances in statistical
analysis in recent decades. In M. Díaz-Campos & S. Balasch (Eds.),
The Handbook of Usage-Based
Linguistics (first edition.). John Wiley & Sons Inc.
Gries, S. Th., & Deshors, S. C. (2014). Using regressions to explore
deviations between corpus data and a standard/ target: Two suggestions.
Corpora, 9(1), 109–136. doi:10.3366/cor.2014.0053
Gries, S. Th., & Paquot, M. (2020). Writing up a corpus-linguistic
paper. In M. Paquot & S. Th. Gries (Eds.), A Practical
Handbook of Corpus Linguistics (pp. 647–659).
Springer International Publishing. doi:10.1007/978-3-030-46216-1_26
Grieve, J., Nini, A., & Guo, D. (2018). Mapping lexical innovation
on American social media. Journal of English
Linguistics, 46(4), 293–319.
Harris, Z. S. (1954). Distributional structure. Word,
10(2-3), 146–162. doi:10.1080/00437956.1954.11659520
Hay, J. (2002). From speech perception to morphology: Affix
ordering revisited. Language, 78(3), 527–555.
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D.
(2015). The extent and consequences of p-hacking in science. PLoS
Biology, 13(3), e1002106. doi:10.1371/journal.pbio.1002106
Hester, J., Wickham, H., & Csárdi, G. (2024). fs: Cross-platform file system operations based on
libuv. Retrieved from https://fs.r-lib.org
Hicks, S. C., & Peng, R. D. (2019). Elements and principles for
characterizing variation between data analyses. arXiv. doi:10.48550/arXiv.1903.07639
Hvitfeldt, E. (2023). textrecipes: Extra
recipes for text processing. Retrieved from https://github.com/tidymodels/textrecipes
Ide, N., Baker, C., Fellbaum, C., Fillmore, C., & Passonneau, R.
(2008). MASC: The Manually Annotated
Sub-Corpus of American English. In Sixth
International Conference on Language Resources
and Evaluation, LREC 2008 (pp.
2455–2460). European Language Resources Association (ELRA).
Ide, N., & Macleod, C. (2001). The American National
Corpus: A standardized resource for American
English. In Proceedings of Corpus
Linguistics. Lancaster, UK.
Ignatow, G., & Mihalcea, R. (2017). An introduction to text
mining: Research design, data collection, and
analysis. Sage Publications.
Jaeger, T. F., & Snider, N. (2007). Implicit learning and syntactic
persistence: Surprisal and cumulativity. University of
Rochester Working Papers in the Language Sciences, 3(1).
Johnson, K. (2008). Quantitative methods in linguistics.
Blackwell Pub.
Kato, A., Ichinose, S., & Kudo, T. (2024). gibasa: An alternative Rcpp wrapper
of MeCab. Retrieved from https://CRAN.R-project.org/package=gibasa
Kerr, N. L. (1998). HARKing: Hypothesizing
after the results are known. Personality and social psychology
review, 2(3), 196–217.
Kloumann, I., Danforth, C., Harris, K., & Bliss, C. (2012).
Positivity of the English language. PLoS ONE.
doi:10.1371/journal.pone.0029484
Koehn, P. (2005). Europarl: A parallel corpus for statistical machine
translation. MT Summit X, 12–16.
Kostić, A., Marković, T., & Baucal, A. (2003). Inflectional
morphology and word meaning: Orthogonal or co-implicative
cognitive domains? In R. H. Baayen & R. Schreuder (Eds.),
Morphological Structure in Language
Processing (pp. 1–44). De Gruyter Mouton. doi:10.1515/9783110910186.1
Kowalski, J., & Cavanaugh, R. (2024). TBDBr: Easy
access to TalkBankDB via R API. Retrieved from https://github.com/TalkBank/TalkBankDB-R
Krathwohl, D. R. (2002). A revision of Bloom’s
Taxonomy: An overview. Theory into
Practice, 41(4), 212–218.
Kross, S., Carchedi, N., Bauer, B., & Grdina, G. (2020). swirl: Learn R, in
R. Retrieved from https://CRAN.R-project.org/package=swirl
Kucera, H., & Francis, W. N. (1967). Computational analysis of
present day American English. Brown University Press
Providence.
Landau, W. M. (2021). The targets R package: A dynamic
make-like function-oriented pipeline toolkit for reproducibility and
high-performance computing. Journal of Open Source Software,
6(57), 2959. doi:10.21105/joss.02959
Larsson, T., & Biber, D. (2024). On the perils of linguistically
opaque measures and methods: Toward increased transparency
and linguistic interpretability. In P. Crosthwaite (Ed.), Corpora
for language learning: Bridging the research-practice
divide (pp. 131–141). Taylor & Francis.
Leech, G. (1992). 100 million words of English: The
British National Corpus (BNC), (1991), 1–13.
Lewis, M. (2004). Moneyball: The art of winning an
unfair game. WW Norton & Company.
Liu, K., & Afzaal, M. (2021). Syntactic complexity in translated and
non-translated texts: A corpus-based study of simplification. PLoS
ONE, 16(6), e0253454. doi:10.1371/journal.pone.0253454
Lozano, C. (2022). CEDEL2: Design, compilation
and web interface of an online corpus for L2 Spanish
acquisition research. Second Language Research, 38(4),
965–983. doi:10.1177/02676583211050522
Macwhinney, B. (2024). TalkBank. The TalkBank
system. Repository. Retrieved from https://talkbank.org/
Manning, C. (2003). Probabilistic syntax. In Bod, J. Hay, & Jannedy
(Eds.), Probabilistic Linguistics (pp. 289–341).
Cambridge, MA: MIT Press.
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data
analytical work reproducibly using R (and friends). The
American Statistician, 72(1), 80–88.
Microsoft. (2024). Visual Studio Code. Code Editing.
Redefined. Software. Retrieved from https://code.visualstudio.com/
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.
(2013). Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing
systems (pp. 3111–3119).
Moroz, G. (2017). lingtypology: Easy
mapping for linguistic typology. Retrieved from https://CRAN.R-project.org/package=lingtypology
Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using
simulation studies to evaluate statistical methods. Statistics in
Medicine, 38(11), 2074–2102. doi:10.1002/sim.8086
Mosteller, F., & Wallace, D. L. (1963). Inference in an authorship
problem. Journal of the American Statistical Association,
58(302), 275–309. Retrieved from https://www.jstor.org/stable/2283270
Mullen, L. (2022). tokenizers: Fast,
consistent tokenization of natural language text. Retrieved from https://docs.ropensci.org/tokenizers/
Muñoz, C. (Ed.). (2006). Age and the rate of foreign language
learning (1st ed., Vol. 19). Clevedon: Multilingual Matters.
Nisioi, S., Rabinovich, E., Dinu, L. P., & Wintner, S. (2016). A
corpus of native, non-native and translated texts. In Proceedings of
the tenth international conference on language resources and evaluation
(LREC 2016). Portoroz̆, Slovenia: European
Language Resources Association (ELRA).
Nivre, J., De Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D.,
Pyysalo, S., … Zeman, D. (2020). Universal dependencies v2:
An evergrowing multilingual treebank collection. arXiv
arXiv:2004.10643. Retrieved from https://arxiv.org/abs/2004.10643
Olohan, M. (2008). Leave it out! Using a comparable corpus
to investigate aspects of explicitation in translation. Cadernos de
Tradução, 153–169.
Ooms, J. (2023). jsonlite: A simple and
robust JSON parser and generator for R.
Retrieved from https://jeroen.r-universe.dev/jsonlite
Paquot, M., & Gries, S. Th. (Eds.). (2020). A practical handbook
of corpus linguistics. Switzerland: Springer.
Pedersen, T. L. (2024). ggraph: An
implementation of grammar of graphics for graphs and networks.
Retrieved from https://ggraph.data-imaginist.com
Petrenz, P., & Webber, B. (2011). Stable classification of text
genres. Computational Linguistics, 37(2), 385–393.
doi:10.1162/COLI_a_00052
Posit. (2024). RStudio. RStudio. Software.
Retrieved from https://posit.co
R Community. (2024). The comprehensive R archive network.
The Comprehensive R Archive Network. Repository. Retrieved from
https://cran.r-project.org/
R Special Interest Group on Databases (R-SIG-DB), Wickham, H., &
Müller, K. (2024). DBI: R database interface.
Retrieved from https://dbi.r-dbi.org
Riehemann, S. Z. (2001). A constructional approach to idioms and
word formation (PhD thesis). Stanford.
Rinker, T. (2019). lexicon: Lexicons for
text analysis. Retrieved from https://github.com/trinker/lexicon
Robinson, D., & Silge, J. (2024). tidytext: Text mining using dplyr, ggplot2, and
other tidy tools. Retrieved from https://juliasilge.github.io/tidytext/
ROpenSci. (2024). The R-Universe System. The R-Universe
System. Repository. Retrieved from https://ropensci.org/r-universe/
Rossman, A. J., & Chance, B. L. (2014). Using simulation-based
inference for learning introductory statistics. WIREs Computational
Statistics, 6(4), 211–221. doi:10.1002/wics.1302
Rowley, J. (2007). The wisdom hierarchy: Representations of
the DIKW hierarchy. Journal of Information
Science, 33(2), 163–180. doi:10.1177/0165551506070706
Saxena, S., & Gyanchandani, M. (2020). Machine learning methods for
computer-aided breast cancer diagnosis using histopathology: A narrative
review. Journal of medical imaging and radiation sciences,
51(1), 182–193.
Sedgwick, P. (2015). Units of sampling, observation, and analysis.
BMJ (online), 351, h5396. doi:10.1136/bmj.h5396
Serigos, J. (2020). Using automated methods to explore the social
stratification of anglicisms in Spanish. Corpus
Linguistics and Linguistic Theory, 0(0),
000010151520190052. doi:10.1515/cllt-2019-0052
Shriberg, E. E. (1994). Preliminaries to a theory of speech
disfluencies (PhD thesis). University of California at Berkeley.
Silge, J. (2022). janeaustenr: Jane
Austen’s complete novels. Retrieved from https://github.com/juliasilge/janeaustenr
Silveira, N., Dozat, T., de Marneffe, M.-C., Bowman, S., Connor, M.,
Bauer, J., & Manning, C. D. (2014). A gold standard dependency
corpus for English. In Proceedings of the ninth
international conference on language resources and evaluation
(LREC-2014).
Sternberg, R. J., & Sternberg, K. (2010). The psychologist’s
companion: A guide to writing scientific papers for students and
researchers (5th ed.). Cambridge University Press. doi:10.1017/CBO9780511762024
Szmrecsanyi, B. (2004). On operationalizing syntactic complexity. In
Le poids des mots. Proceedings of the seventh
international conference on textual data statistical analysis. Louvain-la-Neuve (Vol. 2, pp. 1032–1039).
The R Foundation. (2024). The R project for statistical
computing. R: The R Project for Statistical Computing.
Software. Retrieved from https://www.r-project.org/
Tottie, G. (2011). Uh and um as sociolinguistic markers in British
English. International Journal of Corpus Linguistics,
16(2), 173–197.
Tottie, G. (2014). On the use of uh and um in American
English. Functions of Language, 21(1), 6–29.
doi:10.1075/fol.21.1.02tot
University of Colorado Boulder. (2008). Switchboard Dialog Act
Corpus. Web download. Linguistic Data Consortium.
Retrieved from https://catalog.ldc.upenn.edu/docs/LDC97S62/
Uryu, S. (2024). washoku: Extra
’recipes’ for Japanese text, date and address
processing. Retrieved from https://github.com/uribo/washoku
Ushey, K., & Wickham, H. (2024). renv: Project environments. Retrieved from https://rstudio.github.io/renv/
Voigt, R., Camp, N. P., Prabhakaran, V., Hamilton, W. L., Hetey, R. C.,
Griffiths, C. M., … Eberhardt, J. L. (2017). Language from police body
camera footage shows racial disparities in officer respect.
Proceedings of the National Academy of Sciences,
114(25), 6521–6526.
Waring, E., Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H.,
& Ellis, S. (2022). skimr: Compact
and flexible summaries of data. Retrieved from https://docs.ropensci.org/skimr/
Welbers, K., & van Atteveldt, W. (2022). rsyntax: Extract semantic relations from text by
querying and reshaping syntax. Retrieved from https://CRAN.R-project.org/package=rsyntax
Wenfeng, Q., & Yanyi, W. (2019). jiebaR: Chinese text
segmentation. Retrieved from https://CRAN.R-project.org/package=jiebaR
White, J. M. (2023). ProjectTemplate: Automates the
creation of new statistical analysis projects. Retrieved from https://CRAN.R-project.org/package=ProjectTemplate
Wickham, H. (2014a). Advanced R. CRC Press.
Wickham, H. (2014b). Tidy data. Journal of Statistical
Software, 59(10). doi:10.18637/jss.v059.i10
Wickham, H. (2023a). forcats: Tools for
working with categorical variables (factors). Retrieved from https://forcats.tidyverse.org/
Wickham, H. (2023b). stringr: Simple,
consistent wrappers for common string operations. Retrieved from https://stringr.tidyverse.org
Wickham, H. (2023c). tidyverse: Easily
install and load the Tidyverse. Retrieved from https://tidyverse.tidyverse.org
Wickham, H. (2024). rvest: Easily
harvest (scrape) web pages. Retrieved from https://rvest.tidyverse.org/
Wickham, H., & Bryan, J. (2023). R packages: Organize, test,
document, and share your code (second edition.). Beijing: O’Reilly.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., … van den Brand, T. (2024). ggplot2: Create elegant data visualisations using
the grammar of graphics. Retrieved from https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D.
(2023). dplyr: A grammar of data
manipulation. Retrieved from https://dplyr.tidyverse.org
Wickham, H., Girlich, M., & Ruiz, E. (2024). dbplyr: A dplyr back end for databases.
Retrieved from https://dbplyr.tidyverse.org/
Wickham, H., & Grolemund, G. (2017). R for data science
(First edit.). O’Reilly Media. Retrieved from http://r4ds.had.co.nz/
Wickham, H., & Henry, L. (2023). purrr: Functional programming tools.
Retrieved from https://purrr.tidyverse.org/
Wickham, H., Hester, J., & Bryan, J. (2024). readr: Read rectangular text data. Retrieved
from https://readr.tidyverse.org
Wickham, H., Miller, E., & Smith, D. (2023). haven: Import and export SPSS,
Stata and SAS files. Retrieved from https://haven.tidyverse.org
Wickham, H., Vaughan, D., & Girlich, M. (2024). tidyr: Tidy messy data. Retrieved from https://tidyr.tidyverse.org
Wijffels, J. (2023). udpipe:
Tokenization, parts of speech tagging, lemmatization and dependency
parsing with the UDPipe ’NLP’ toolkit. Retrieved from
https://bnosac.github.io/udpipe/en/index.html
Wijffels, J., & Watanabe, K. (2023). word2vec: Distributed representations of
words. Retrieved from https://github.com/bnosac/word2vec
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., &
Teal, T. K. (2017). Good enough practices in scientific computing.
PLoS Computational Biology, 13(6), 1–20. doi:10.1371/journal.pcbi.1005510
Wulff, S., Stefanowitsch, A., & Gries, S. Th. (2007). Brutal
Brits and persuasive Americans. Aspects of
Meaning.
Xie, Y. (2024). tinytex: Helper
functions to install and maintain TeX Live,
and compile LaTeX documents. Retrieved from https://github.com/rstudio/tinytex
Zipf, G. K. (1949). Human behavior and the principle of least
effort. Oxford, England: Addison-Wesley Press.